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Abstract

We review the principles and practical application of receiver-operating characteristic (ROC)
analysis for diagnostic tests. ROC analysis can be used for diagnostic tests with outcomes measured
on ordinal, interval or ratio scales. The dependence of the diagnostic sensitivity and specificity on
the selected cut-off value must be considered for a full test evaluation and for test comparison. All
possible combinations of sensitivity and specificity that can be achieved by changing the test’s cut-
off value can be summarised using a single parameter; the area under the ROC curve. The ROC
technique can also be used to optimise cut-off values with regard to a given prevalence in the target
population and cost ratio of false-positive and false-negative results. However, plots of optimisation
parameters against the selected cut-off value provide a more-direct method for cut-off selection.
Candidates for such optimisation parameters are linear combinations of sensitivity and specificity
(with weights selected to reflect the decision-making situation), odds ratio, chance-corrected
measures of association (e.g. kappa) and likelihood ratios. We discuss some recent developments in
ROC analysis, including meta-analysis of diagnostic tests, correlated ROC curves (paired-sample
design) and chance- and prevalence-corrected ROC curves. © 2000 Elsevier Science B.V. All rights
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1. Introduction

The crude results of most serodiagnostic tests are measured on ordinal (e.g. grading
scheme or sample titration) or continuous (e.g. quantitative readings of single-dilution
tests) scales. For all diagnostic tests (except those producing dichotomous outcomes) a
value on the original scale is selected as a decision threshold (cut-off value) to define
positive and negative test outcomes. Comparison of the dichotomised test results against
the true status of individuals (as determined by a reference or “gold standard” test)
allows estimation of the diagnostic sensitivity (Se, probability of a positive test outcome
in a diseased individual) and specificity (Sp, probability of a negative test outcome in a
non-diseased individual) (see Greiner and Gardner, 2000). It is well recognised that Se
and Sp are inversely related depending on the choice of cut-off value. When increasing
values of a measurement are associated with disease, higher (lower) cut-off values are
generally associated with lower (higher) Se and a higher (lower) Sp. This relationship has
two important implications. First, we would like to select a cut-off value such that the
desired operating characteristics (Se, Sp) are achieved. Second, we realise that Se and Sp
at a single cut-off value do not describe the test’s performance at other potential cut-off
values. The latter also implies that the effect of the selected cut-off value should be taken
into account when comparing diagnostic tests. These problems are addressed by the
receiver-operating characteristic (ROC) analysis and its derivatives.

The ROC methodology was developed in the early 1950s for the analysis of signal
detection in technical sciences and was first used in medicine in the late 1960s for the
assessment of imaging devices (reviewed by Zweig and Campbell, 1993). ROC analysis
has been increasingly used for the evaluation of clinical laboratory tests (Metz, 1978;
Henderson, 1993; Schulzer, 1994; Smith, 1995). However, Henderson and Bhayana
(1995) reported a lack of consistency with respect to the presentation of ROC analyses.
The use of ROC analysis is still limited in the medical and veterinary literature. A
systematic review of evaluation (validation) studies of serodiagnostic tests published in
12 biomedical journals in 1995 revealed that ROC analysis has been used in only 3 of 65
medical studies and 1 of 33 veterinary studies (Greiner and Wind, unpublished).

We review practically relevant features of ROC curves and related approaches with
emphasis on cut-off selection and test comparison. Data obtained by enzyme-linked
immunosorbent assays (ELISAs) for the detection of Trypanosoma antibodies will be
used as an example. The presentation will refer to continuous ELISA data because this
test format is often used for seroepidemiologic applications. The principles, however,
apply also to continuous and ordinal diagnostic tests in general. Finally, we describe some
extensions of classical ROC-analysis methodology. In the following examples, increasing
values of a test result are associated with increasing likelihood of disease.

2. Example data
We use a random subset of data from a validation study of antibody ELISAs for the

detection of Trypanosoma antibodies in bovine serum. In this study, a negative control
group was sampled from non-exposed (Germany) and from exposed (parasitologically
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non-infected cattle from a tsetse-infested area in Uganda) cattle populations. The positive
control group was sampled from the exposed (parasitologically confirmed) population
(Greiner et al., 1997). Test antigen derived from blood-stream form (ELISA A) and in
vitro-cultivated procyclic trypanosomes (ELISA B) were evaluated using control sera
from 16 exposed non-infected and 4 exposed infected animals. From this experiment we
obtained 20 paired optical-density values (OD) (Table 1). In a further experiment, the
procyclic ELISA was evaluated using another random selection of 75 non-exposed non-
infected and 25 exposed infected animals (ELISA C). In this experiment, the results were
expressed as multiples of an internal positive standard (percentage positivity, PP)
(Table 2). Preliminary cut-off values had been chosen such that a perfect (100%) Se for
ELISA A and B and a perfect Sp for ELISA C were obtained. Cut-off values that fulfil
these criteria were 0.86 (Se=1, Sp=0.5), 1.5 (Se=1, Sp=0.5) and 0.7 (Se=0.8, Sp=1) for
ELISA A, B and C, respectively. Using ROC analysis and related techniques, we would
like (for this example) to rank the three ELISAs according to their diagnostic
performance and determine cut-off values that concurrently optimise Se and Sp. Dotplot
diagrams for the example data show that there is considerable overlap between negative
and positive reference samples (Fig. 1; frequency distribution diagrams are appropriate in
case of larger sample sizes). We also note that Se and Sp are a function of the cut-off
value. For example, we could achieve a perfect Se (and Sp=0.91) for ELISA C if we were

Table 1
Results of a evaluation study of antibody ELISAs A and B for the detection of Trypanosoma antibodies in bovine
serum (sub-sample of n=20 from a larger data set described by Greiner et al., 1997)*

Animal No. Reference test” ELISA A ELISA B
1 0 0.166 0.424
2 0 1.651 2.228
3 0 0.19 0.822
4 0 0.832 1.787
5 0 0.141 0.428
6 0 0.693 1.401
7 1 2.344 2.265
8 0 1.2 0.91
9 0 1.994 2.25

10 0 1.681 2.072

11 0 0.977 1.525

12 0 0.832 1.292

13 0 1.454 1.85

14 0 1.441 1.971

15 1 0.868 1.501

16 0 2.618 1.926

17 0 0.525 0.429

18 0 0.279 0.164

19 1 2.469 2.861

20 1 1.632 2.24

# Results expressed as optical-density values (OD). The mean and the standard deviation of 16 reference
negative, the mean and the standard deviation of 4 reference test positive animals for ELISA A and B is 1.04,
0.73, 1.83, 0.74 and 1.34, 0.72, 2.22, 0.56, respectively.

® Reference test is the parasitological diagnosis of Trypanosoma infection (O=negative, 1=positive).
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Table 2
Results of a evaluation study of ELISA C for the detection of Trypanosoma antibodies in bovine serum of 75
non-infected and 25 infected cattle

ELISA values®

Non-infected (D—) Non infected (D—) Infected (D+)
0 0.067 0.254
0 0.075 0.364
0 0.081 0.49
0 0.087 0.509
0 0.095 0.65
0 0.112 0.702
0 0.119 0.716
0.001 0.119 0.743
0.001 0.129 0.752
0.001 0.14 0.879
0.001 0.14 0.899
0.001 0.144 0.927
0.001 0.159 0.937
0.001 0.164 1.057
0.002 0.169 1.064
0.002 0.18 1.081
0.003 0.183 1.116
0.003 0.184 1.263
0.005 0.192 1.346
0.009 0.194 1.402
0.009 0.21 1.665
0.01 0.216 1.698
0.011 0.216 1.799
0.016 0.222 1.801
0.018 0.222 1.934
0.02 0.229
0.031 0.233
0.036 0.233
0.039 0.248
0.043 0.294
0.043 0.318
0.047 0.341
0.048 0.401
0.048 0.431
0.051 0.482
0.055 0.696
0.056
0.058
0.067

?Results expressed as multiples of the reaction of a positive reference preparation (PP). The mean (+s)
ELISA values of the 75 non-infected and 25 infected animals were 0.11 (£0.13) and 1.04 (£0.47), respectively.



M. Greiner et al./ Preventive Veterinary Medicine 45 (2000) 23—41 27

A B
31 3 1 o
> ° >
2 o 21 g 8
% o o o -8 go
(_“ o o a go o
o
2 11 ° 2 11 3
5 £ 5
o o o
80 o o
01 : - 01 :
(o] 1 (o] 1
C
27 o
z :
s 1.5 1 3
1] o
& 4 >
2 .51 % e
(] a o
0‘ QI
01 , ;
(o] 1

Fig. 1. Dotplots of three Trypanosoma ELISAs. ELISA A and B: optical-density values of 16 non-infected (0)
and 4 infected (1) animals. ELISA C: PP values of 75 non-infected (0) and 25 infected (1) animals.

to select 0.25 as the cut-off. The example data (pvm_roc.xls) can be downloaded from
http://city.vetmed.fu-berlin.de/~mgreiner/pub/data.

3. Basic principles of ROC curves

The underlying assumption of ROC analysis is that a diagnostic variable (e.g. ELISA
values) is used to discriminate between two mutually exclusive states of tested animals.
During the following discussion, we consider the true disease status (denoted D+ and D—
for diseased and non-diseased animals, respectively) but note that various other
conditions such as infected/non-infected and protected/non-protected established using
an appropriate reference method could also be the aim of diagnostic testing. The
statistical distributions of the test values for the D+ and D— subpopulations may be
normal (binormal assumption), from different families of distributions (e.g. normal, log-
normal) or ordinal.

The diagnostic Se and Sp are a function of the selected cut-off value. ROC analysis
assesses the diagnostic performance of the system in terms of Se and (1—Sp) for each
possible cut-off value of the test. The terms Se and (1—Sp) in this context are also
referred to as ‘“‘true-positive fraction” and “‘false-positive fraction™, respectively. Some
authors plot the Se against Sp which has no further effect on interpretation because the
ROC-curve statistics remain unchanged (e.g. area under the curve) or change in an
evident way (e.g. slope).

For tests that yield continuous results (such as ELISA), the cut-off value is shifted
systematically over the measurement range and the observed pairs of Se and (1—Sp) are
established for each of these k different operating points. The use of a constant, small bin
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(interval) width is always valid and recommendable for large data sets. For smaller data
sets (or categorical data), it is more economic to use each observed measurement point as
a bin limit, which results in variable bin widths for continuous data (also, for categorical
data the categories are not necessarily equidistant) but provides an ““‘optimal resolution”.
For sparse data, the shape of the ROC curve cannot be smoothed by increasing the
number of bins. For a measurement range of 2, the choice of k=201 would yield a bin
width of 0.01. The resulting k pairs {(1—Sp), Se} are plotted in a unit square (i.e. the x
and y axes range from 0O to 1). The connection of the points leads to a staircase trace that
connects the upper right corner (Se=1, Sp=0 at a cut-off that corresponds to the smallest
observed value) to the lower left corner (Se=0, Sp=1 at a cut-off that corresponds to the
highest observed value) of the unit square, irrespective of the original unit and range of
the diagnostic variable. Note that we assume that the mean value of the negative reference
sample is smaller than the mean value of the positive reference sample. Any linear (with
negative slope) or inverse transformation of the test data can be used to prepare data for
ROC analysis if this assumption does not hold. The empirical trace through the ROC
space is referred to as the non-parametric ROC plot. Under the binormal assumption, one
can construct a smooth curve as described in the appendix (parametric approach). The
latter procedure is termed ‘‘semi-parametric” if performed on rank-transformed test data
(Metz et al., 1998). Detilleux et al. (1999) discuss differences among non-parametric,
semi-parametric and parametric methods for ROC analysis using the example of somatic-
cell scores for diagnosis of subclinical mastitis. The slope of the smooth ROC curve can
be interpreted in terms of the likelihood ratio (LR) of the test (see Appendix B). This
relationship will be further discussed below.

ROC curves are invariant with respect to monotone transformations of the original test
data such as the linear (with positive slope), logarithmic and square root (Campbell,
1994). In the following discussion, “ROC plot” denotes a graph of the empirical data
whereas “ROC curve” refers to the smooth ROC function which is an estimate of the true
underlying ROC curve using parameters of the empirical sample. ROC plots for the
example data are shown in Fig. 2. A number of methods are available for ROC-curve
estimation. Tosteson and Begg (1988) used a generalised linear-modelling approach,
which allows control of covariates and does not require the assumption of binormality.

Kraemer (1992) and Smith (1995, p. 37) emphasised that Se, Sp and ROC curves are
population-specific, despite widespread beliefs advocating the contrary in many text
books. True differences in Se and Sp of a test among and within populations and biases in
the estimation process of test parameters are described elsewhere (Greiner and Gardner,
2000) and directly apply to ROC analysis (Zweig, 1993).

3.1. Use of ROC analysis to evaluate the discriminatory power of a diagnostic test

The area under the ROC curve (AUC) is a global (i.e. based on all possible cut-off
values) summary statistic of diagnostic accuracy. ROC plots for diagnostic tests with
perfect discrimination between negative and positive reference samples (no overlap of
values of the two groups) pass through the co-ordinates {0;1} which represent 100% Se
and Sp. In this case, the AUC would be 1. According to an arbitrary guideline (based on a
suggestion by Swets, 1988), one could distinguish between non-informative (AUC=0.5),
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Fig. 2. ROC plots for ELISA A, B and C for the detection of Trypanosoma antibodies in cattle.

less accurate (0.5<AUC<0.7), moderately accurate (0.7<AUC<0.9), highly accurate
(0.9<AUC<]1) and perfect tests (AUC=1). Bamber (1975) and Hanley and McNeil (1982)
recognised that the AUC is equivalent to the probability that a randomly drawn individual
from the positive reference sample has a greater test value than a randomly drawn
individual from the negative reference sample. This interpretation is known as two-
alternative forced-choice (2AFC) experiment, where one diseased and one non-diseased
individual is presented to the rater (i.e. the diagnostic test) who has to identify the
diseased one (see Hanley and McNeil, 1982). Obviously, the probability of a correct
answer in a 2AFC experiment (thus the AUC) is not affected by the prevalence in the
sample because for each rating the prevalence is fixed at 50% by design.

The AUC summarises the ROC curve as a whole, and therefore attributes the same
weighting to both relevant and irrelevant parts of the curve. In practice, one would not
select cut-off values from those parts of the ROC curve that have either maximum (lower
left part) or minimum slope (upper right part) because other cut-off values exist that lead
to better Se without loss of Sp or better Sp without loss of Se, respectively. Furthermore,
the diagnostic context might dictate that Se>Sp or Sp>Se or that Se and/or Sp assumes
certain minimum values. For example, if the diagnostic context requires that Se is at least
90%, the part of the ROC curve below Se=0.9 and its contribution to the AUC statistic is
irrelevant for test characterisation and comparison. Detilleux et al. (1999) illustrate the
computation of partial areas using the example of somatic-cell score for diagnosis of
subclinical mastitis. The AUC statistic gives equal weighting to Se and Sp, which should
be considered for interpretation. An appropriate sample estimate of the AUC is the
Mann—Whitney U statistic in the version of the two-sample rank-sum test. Formulae are
shown in Appendix C. This non-parametric interpretation requires no assumptions
regarding the distribution of the negative and positive reference samples.

ROC analysis is quite robust to deviations from the binormal assumption (Hanley,
1988). If the test data are approximately normal (or can be transformed into normal) the



30 M. Greiner et al./ Preventive Veterinary Medicine 45 (2000) 23—41

distribution of test data can be summarised with the mean values and standard deviations
of the two subpopulations. The ROC function can then be parameterised using the
standardised mean difference (A; which is a measure of the discriminatory power of the
test) and the ratio of the two standard deviations (B; which is a measure of symmetry).
The standard error of the AUC is essential for sample-size calculations (Obuchowski,
1994; Obuchowski and McClish, 1997) and for comparison of ROC curves (see
Appendices C-E).

3.2. Use of ROC analysis for the selection of cut-off values

Cut-off values for diagnostic tests can be derived using different methods amongst
which the Gaussian (normal) distribution method is most commonly used. Based on this
method, a cut-off value is defined as the mean plus two standard deviations (2SD) of the
negative reference sample. The rationale of the 2SD procedure is to establish a cut-off
value providing an Sp of 97.5% (e.g. Barajas-Rojas et al., 1993). The procedure is clearly
not adequate if the test values follow a skewed or multimodal distribution, as is often the
case. Moreover, the procedure does not consider the Se; this is the most important
disadvantage.

Two parameters (Se and Sp) are necessary to fully describe the probabilities of the four
possible test outcomes (TP=true-positive, TN=true-negative, FP=false-positive and
FN=false-negative). As described by Schifer (1989), the cut-off value and the resulting
Se (or Sp) can be obtained for a pre-selected Sp (or Se). A plot of Se and Sp as a function
of the cut-off value (Fig. 3) provides an useful visualisation and can also be used to derive
two cut-off values for the definition of intermediate test results (i.e. test results that are
considered non-negative and non-positive) as described elsewhere (Greiner et al., 1995).
Optimally, the cut-off selection procedure is an informed decision that takes into account
the epidemiologic situation (e.g. prevalence in the target population) and the relative
consequences of FN and FP test results (which may differ for every different decision-
making situation). As an example, given a disease of low prevalence and high cost of
false-positive diagnoses, it may be advisable to choose a cut-off at the lower part of the

00 05 10 1.5 20
cut-off (PP)

Fig. 3. Plot of the diagnostic sensitivity (Se) and specificity (Sp) of ELISA C as a function of the cut-off value
(PP).
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curve to maximise Sp. If on the other hand, the disease occurs at high prevalence and
missing any diseased animal has serious consequences, a cut-off value towards the upper
part of the curve would be selected to maximise Se.

Each application of a diagnostic test is associated with specific consequences of the
possible test outcomes. One can attempt to express these consequences (in this context,
referred to as “‘utilities’”) on a common scale (Sondik, 1982; Smith, 1993). Combining
ROC analysis with utility-based decision theory can be used to provide an objective,
quantitative guide for cut-off selection. This concept is theoretically linked to the ROC
curve through the optimality criterion S=[(1—P)/P][(Cgp—Ctn)/(Cen—Crp)], Where P
denotes the prevalence in the target population, Cgp Ctn, Cen and Crp represent the
utilities associated with the four possible test outcomes, respectively, and S is the slope of
the ROC curve at the optimal operating point (Metz, 1978; Smith, 1995, pp. 41f)
(Appendix B). The challenge of this approach is that it requires the users to quantify the
consequences of each possible test outcome, although outcomes are often thought of only
qualitatively. Smith (1995, p. 42) gives an example of Johne’s disease for selection of an
optimal cut-off value under certain cost and prevalence assumptions.

Generally, without better information, one tends to assume P=0.5, Cgp=Cen;,
Crn=Crp and a cut-off value would be selected such that S=1. The point on the ROC
curve closest to the upper left corner of the unit square also optimises prevalence-
independent summary measures of Se and Sp such as the Youden index (J=Se+Sp—1)
(Hilden, 1991; measures of diagnostic accuracy are explained in Greiner and Gardner,
2000). Giving equal weights to Se and Sp will very often not only fully exploit the
information provided by the diagnostic test in the context of a particular diagnostic
objective, but does also facilitate comparison of different diagnostic tests. It implies that
the prevalence in the target population is about 50% and that the costs of false-positive
and false-negative test results are equivalent. Consequently, this cut-off point might not
be optimal for other prevalences and cost ratios.

The slope approach as described above is not a trivial task for empirical (staircase)
ROC plots because it requires a smoothed function (e.g. binormal distribution) which
introduces additional uncertainties. Therefore, plots of defined optimality criteria as a
function of the cut-off value provide a more-practical solution to the problem. Candidates
for these criteria are the Se and Sp (Fig. 3), J, efficiency (Ef=P Se+(1—P) Sp) (Fig. 4,
top), a misclassification-cost term (MCT=(Cgn/Cgp)P(1—Se)+(1—P)(1—Sp)) (Greiner,
1996) (Fig. 4, middle), odds ratio (OR=antilog [logit (Se)+logit (Sp)]; where the four
cells of the 2x2 table are augmented by %) and the kappa index (Fig. 4, bottom). Since the
slope of the ROC curve is equivalent to the LR of the continuous test value, a plot of LR
against the cut-off values (Fig. 5, a logarithmic transformation of LR was chosen to improve
the readability of the graph) provides an alternative to the plot of MCT. Important aspects for
interpretation of these criteria include prevalence-independence (Se, Sp, J, OR, LR),
prevalence-dependence (Ef, kappa, MCT, optimised LR for a given prevalence),
consideration of misclassification costs (MCT, LR), underlying non-parametric (Se, Sp, J,
Ef, OR, MCT, kappa) or logistic regression model (LR), consideration of agreement due to
chance (kappa). We suggest that both the non-parametric MCT and logistic regression-based
LR are useful for cut-off selection. However, further studies are required to investigate the
behaviour of the two criteria for various distributions of test data.
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Fig. 4. The efficiency and the Youden index (top), the misclassification cost term for 25 and 5% prevalence
(MCT, middle) and the kappa and the log odds ratio (OR, bottom) as a function of the cut-off value for ELISA C.
The sample prevalence was 25%.
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20 7
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Fig. 5. The natural logarithm of the LR as a function of the cut-off value for ELISA C based on a logistic
regression model. The horizontal line marks LR=1 and denotes a cut-off value of 0.4 (PP), which minimised
misclassification costs under an assumption of 50% prevalence and equal relative importance of sensitivity and
specificity (see Appendix B).

In the ELISA C example, we would select a cut-off value of 0.36 (PP) to achieve
maximum accuracy. This result can be read from the plot of Se and Sp as a function of the
cut-off value (Fig. 3). Software is available to establish this cut-off value and the
corresponding test parameters numerically (Greiner et al., 1995). According to the
summary measures Ef and J, the MCT, OR and the kappa index, a range of PP between 0.3
and 0.7 would be suitable for the selection of a cut-off (Fig. 4). Algorithms that search for
global minima can identify optimal cut-off points (e.g. implemented in CMDT; see Table 3).

Logistic regression analysis is inherently related to the diagnostic-test situation (e.g.
Knottnerus, 1992) and can be used for cut-off selection (e.g. Paré et al., 1995). Logistic-
regression analysis of the disease state on the continuous test value of ELISA C as
described in Appendix B yields the estimated coefficients a=—5.70 and b=11.49 and
under the (arbitrary) optimality criterion S=LR=1, an optimal cut-off value of X=0.4
(PP) (see also Fig. 5). An advantage of logistic-regression analysis is that it can be
extended to the case of multiple diagnostic tests (Albert, 1982), interaction and
dependence (see Hanson et al., 2000). ROC analysis can also be used to evaluate the
“diagnostic discrimination” of logistic models in general — and, more specifically, in
logistic models where the explanatory variables include one or more diagnostic markers
and confounders (e.g. age, gender).

3.3. Use of ROC analysis for test comparison

Two or more diagnostic tests may be compared for several reasons. The evaluation of a
new test against an established reference test is a special case of test comparison. Often
the interest is to compare test parameters (e.g. Se, Sp, LRs, “overall discriminatory
power”’; Bennett, 1972; Beam and Wieand, 1991). Such a comparison, however, should
account for the effect of the cut-off value as described below. Especially in the context of
multiple tests (see Gardner et al., 2000, this issue), one is also interested in the agreement
between tests results. For the comparison of the sensitivities (specificities) of two binary
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tests, McNemar’s test can be used to test the null hypothesis that the sensitivities
(specificities) are equal. It is also useful to compare test agreement by calculation of
percent agreement and measures of chance-corrected agreement such as kappa for both
the diseased and non-diseased populations. The kappa index and chi-square tests can also
be used to assess the agreement between two ordinal tests. The kappa index is preferred if
an estimation of the degree of agreement rather than a significance test with arbitrary
significance level («) is required. The correlation between paired results of two
quantitative tests is sometimes described using the product-moment correlation
coefficient (r) based on a linear regression — although measurement errors in both
tests invalidate the simple linear model. Graphical (Bland—Altman), rank-based (Passing—
Bablok) or modified principal-component (Deming) procedures have been recommended
(see Linnet, 1998) to overcome this problem. Plots for visual comparison of tests for a
given diagnostic situation (prevalence, misclassification costs) were suggested by
Remaley et al. (1999).

As described above, the AUC of a diagnostic test (rather than the Se and Sp at a single
cut-off) represents a summary statistic of the overall diagnostic performance of the test.
Consequently, AUCs are useful measures for a comparison of the overall diagnostic
performance of two tests. However, given the equal weighting attributed to all parts under
the curves, it is possible that the comparison of the global AUC will be non-significant for
two tests that differ in an area of practical relevance. Comparison of crossing ROC curves
may also result in misleading inferences from global AUC estimates. Thompson and
Zucchini (1989) describe the use of ANOVA for comparing accuracy indices taking into
account these issues.

The non-parametric area under the plots for the example data as established using Eq.
(C.1) (and its standard error according to Eq. (C.2)) is 0.781 (0.147), 0.859 (0.125) and
0.993 (0.012) for ELISAs A, B and C, respectively. Approximately (symmetric) 95%
confidence intervals (i.e. AUC+1.96SE (AUC)) overlap for all pairwise comparisons of
two tests (data not shown). The pairwise comparison requires an estimate of the
correlation (r) between the values of the two tests (see Appendix D). The difference (and
95% confidence interval) according to Eq. (D.1) between the AUCs for the pairwise
comparison of Avs B, B vs C and A vs C are 0.078 (—0.029, 0.185; paired sample design,
r estimated at 0.85), 0.134 (—0.242, 0.51; two-sample design, » assumed to be 0) and
0.212 (—0.077, 0.5; two-sample design, r assumed to be 0), respectively. The involved
sample sizes of non-diseased (n_) and diseased (n.) animals for the paired comparison
(A:B) was n_=16 and n,=4 and for the unpaired comparisons (A:C, B:C) was n_=16,
n,=4 and n_=75, n, =25 for ELISAs A, B and C, respectively. The confidence interval
for the differences between the tests includes zero and it can be concluded that despite
differences in the AUC estimates, there is no statistically significant difference in
performance of the three ELISAs. The question arises about how large a sample size
would be required to detect an observed difference of 0.212 (ELISA A vs C) at p=0.05.
Using A5, we estimate that at least 33 diseased and 33 non-diseased animals should be
tested with both ELISAs to confirm that the observed difference of the AUCs is
statistically significant. This result is in close agreement with the result (n=31) of the
AccuROC software (Table 3) and reflects the limitation due to the small sample size (16
non-diseased and 4 diseased animals) that was actually used.



Table 3
Functionality of selected software tools for ROC analysis

Name or Scope® Availability  Features® Reference (URL location)
trademark

AccuROC ROC Commercial 1 2 3 5 6 7 11 www.accumetric.com

Analyse-it Package Commercial 1 2 3 5 7 www.analyse-it.com

CMDT Diagn. test Shareware 1 2 3 7 8 9 city.vetmed.fu-berlin.de/~mgreiner
Episcope Package Educational 1 2 3 www.zod.wau.nl/genr/epi.html
GraphROC  ROC Shareware 1 2 3 6 7 9 10 www.netti.fi/~maxiw/index.html
MedCalc Package Commercial 1 2 3 5 www.medcalc.be

NCSS Package Commercial 1 2 3 WWW.Nncss.com

PEPI Package Shareware 1 2 3 www.usd-inc.com/pepi.html
ROCKIT ROC Freeware 2 3 4 5 6 7 www-radiology.uchicago.edu/krl/toppagel1.htm
SIMSTAT Package Shareware 1 www.simstat.com

Stata Package® Commercial 1 2 3 6 www.stata.com

# Package: statistical software package or add-in, ROC: special ROC analysis software, diagn. test: software for diagnostic test evaluation.

® 1: ROC curve on screen, 2: export of ROC curve or scatter plot data to file, 3: area under the curve with standard error or confidence interval, 4: parametric
(smoothed) ROC curve, 5: difference between two ROC curves with confidence intervals or standard error, 6: statistical test(s) for ROC curve comparison, 7: paired-
sample analysis (correlated ROC curves), 8: resampling techniques, 9: other cut-off functions, 10: partial areas under curves, 11: sample size for ROC curve comparison.

¢ User-defined module by P. Price and F. Wolfe.
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4. Recent developments

Confidence bands for ROC curves are needed for inferences from a visual comparison
of curves for two or more tests. Methods based on the Greenhouse—Mantel test (Schéfer,
1994), Kolmogorov—Smirnov test and bootstrapping (Campbell, 1994) have been
suggested for construction of confidence bands. Confidence intervals for the AUC for
diagnostic systems that involve multiple tests were developed by Reiser and Faraggi (1997).

Another topic of current methodological research is the analysis of correlated ROC
curves. Correlation between test results must be taken into account if two tests are
evaluated using the same set of samples (paired-sample design). Toledano and Gatsonis
(1996) suggested an ordinal regression approach and Venkatraman and Begg (1996) used
a distribution-free resampling method. Dependence between test results due to repeated
measurements of the same animals could be accommodated using generalised estimating
equations and the jackknife technique (Beam, 1998) (although generally we would not
recommend pooling of repeated measurements).

The ROC approach can also be applied to combine multiple estimates of Se and Sp for
one test across several primary evaluation studies. The procedure is known as meta-
analysis of diagnostic tests (reviewed by Irwig et al., 1995). One option for a summary
measure that takes into account the effect of different cut-off values across the primary
studies is the summary ROC function as described by Moses et al. (1983).

Chance-corrected ROC curves have been developed to account for the amount of
chance agreement of the conventional parameters Se and Sp (e.g. the QROC concept of
Kraemer, 1992; Gefeller and Brenner, 1994) in analogy to the kappa index. In this
context, however, there is some controversy about the appropriate derivation of the degree
of chance agreement. For example, Holle and Windeler (1997) argued that the suggested
chance-correction for Se using (1—Sp) and for Sp using (1—Se) leads to measures that are
similar to LRs and that chance-corrected Se, Sp and ROC curves were more difficult to
interpret than their conventional counterparts.

5. Software for ROC analysis

Software for ROC analysis is available in various formats including commercial,
shareware or stand-alone products, statistical-program packages with built-in or user-
defined ROC modules, and spreadsheet calculation macros. Some available programmes
are listed in Table 3. However, the list is not comprehensive and we have not compared
the relative advantages of the listed programmes. Some features (based on our experience
and information provided by the producers) are listed as a guide. A comprehensive
evaluation and comparison of the various products would be useful.

6. Conclusions

ROC analysis visualises the cut-off-dependency of ordinal or continuous diagnostic
tests and provides an estimate of the accuracy that is independent of specific cut-off
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values and prevalence. ROC curves allow a comparison between different diagnostic
tests. In addition, the curve provides information which will enable the diagnostician to
optimise use of a test through targeted selection of cut-off values for particular diagnostic
strategies.

Appendix A. ROC function

The theoretical exponential function that underlies the empirical ROC plot can be
estimated under the assumption of normally distributed test values for the non-diseased
and diseased individuals (binormal distribution assumption). Let Xy and x; (where
Xo < X1) denote the mean values and s, and s; denote the standard deviations for the non-
diseased and diseased group, respectively. The ROC function is then characterised by the
parameter A, which is the standardised mean difference of the responses of the two
groups (A = (X; — X)/s1) and the parameter B, which is the ratio of the standard
deviations (B=sy/s;). A and B are also referred to as the separation and symmetry
parameter, respectively (Metz, 1978). The separation parameter (A) may also be
established using s or the pooled standard deviation of the non-diseased and diseased
group. The theoretical justification for using s; is that under the binormal model, the data
can be transformed such that the distributions for non-diseased and diseased individuals
are N(0, 1) and N(u, o), respectively. Using the normal distribution function (®) and the
normal deviate (z), we can write the parametric ROC function as

2(1—Sp) +A).

AB) = ®
Se(SplA,B) ( B

Appendix B. Relationship between ROC curves and likelihood ratios

The slope of the smooth ROC curve (i.e. the tangent at a single point of the function
graph) takes values from O (upper right corner) to 4+oo (lower left corner) and is
equivalent to the theoretical LR of the continuous (or ordinal) test value (X) at the
respective point of the curve. The LR denotes the ratio of the probability (Pr) of observing
the test result in diseased (D+) individuals (Pr(XID+)) and the probability of observing
the same result in non-diseased (D—) individuals (Pr(XID—)). Because the proportions of
D+ and D— individuals with value X may be small in practice, LR cannot be computed as
ratio of observed proportions. The appropriate statistical model for LRs for continuous
test data is the logistic-regression model: logit(Pr(D+I1X))=a+bX+¢, where a and b are
estimated coefficients, ¢ is the error term and Pr (D+1X) denotes the posterior probability
of disease given the test result X. Note that the intercept a depends on the sample
prevalence (P'). Using the value x/, which denotes the continuous test value that does not
change the prior probability of disease (x'=[logit(P")—al/b), we can define the LR for test
value X as

LR(X) = exp[b(X — x')]
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(Simel et al., 1993). Using the optimality criterion S=[(1—P)/P] CR, where P and
CR=[(Cgp—Cn)/(Cen—Crp)] denote the prevalence in the target population and the cost
ratio (see Section 3.2), respectively, we solve [(1—P)/P]JCR=exp[b(X—x')] for X and
obtain, consistent with Anderson (1982), a cut-off value for which LR(X)=S as
X=[logit(P")—logit(P)+In(CR)—al/b.

Choi (1998) shows that the LR of a positive (LR+=Se/(1—Sp)) and of a negative
(LR—=(1—Se)/Sp) test result at a given point on the ROC curve are equivalent to the
slope of the straight line between this point and the lower left and the upper right corner
of the ROC square, respectively, and that the LR of a range of test values is equivalent to
the slope between the two corresponding points on the ROC curve.

Appendix C. Area under the ROC curve

The most-simplistic approach is to connect the points of the ROC curve with straight
lines and to sum the resulting rectangular and triangular areas. This technique (‘“‘the
trapezoidal rule’’) systematically underestimates the true AUC compared with estimates
based on a smoothed curve (Vida, 1993). Geometrically, one can show that the
trapezoidal AUC is equivalent to %(Se—l—Sp) if a single cut-off point is used. The AUC can
be estimated with and without assumptions about the distribution of test results. The first,
non-parametric approach (sometimes referred to as “Wilcoxon-area estimate’’) is based
on the fact that AUC is related to the test statistic U of the two-sample Mann—Whitney
rank-sum test (Bamber, 1975; Hanley and McNeil, 1982).

n()l’ll—U

AUC (C.1)

nony

where ny and n; (with n=ng+n;) denote the sample sizes of non-diseased and diseased
individuals, respectively, U = R — %no(no + 1), and R is the rank sum of the negative
sample. Under the null hypothesis of a non-informative test, the expected value for
the rank sum is E(R) =%ng(n+ 1) and therefore, U =1 (non;) and AUC=0.5. The
null hypothesis can be assessed using the test statistic z= (R—E(R))/+/var(R),
which (for large sample sizes) follows a standard normal distribution. The variance
of R can be estimated as var(R):(nonlsz)/n, where s denotes the sample variance
of the combined ranks for both groups. The standard error (SE) of AUC can be
derived based on a method described by Hanley and McNeil (1982) and Obuchowski
(1994).

)
nong

SE(AUC) _ \/AUC(I - AUC) + (I’l] - 1)(Q1 - AUCZ) + (710 - 1)(Q2 - AUCZ)

(C.2)

where we use the approximations (Hanley and McNeil, 1982)

AUC 2AUC?

Q=nTavey LT rauvo);
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Alternatively, the parametric approach considers the parameters A and B as indicated
above and the term ®(z) which is the cumulative frequency distribution function of the
standard normal distribution (Obuchowski, 1994)

A
AUC (D<\/1+—Bz> (C.3)
Under the null hypothesis of a non-informative test, we expect X; = Xy (which can be
assessed using the two-sample ¢ test). In this case, we get A=0 and AUC=0.5 and the
corresponding ROC plot is a diagonal line. The binormal assumption may not be justified
for a given set of test data and, therefore, (C.1) is the preferred approach. Maximum-
likelihood estimates of the ROC function and the AUC have not been described (Dorfman
and Alf, 1968).

Appendix D. Comparison of two ROC curves
Let d denote the difference between the areas under two ROC curves, AUC, and AUC,.

Values of d close to zero indicate that the two tests have the same diagnostic performance.
We can establish the standard error (SE) of d as

SE(d) :\/ var(AUC, ) + var(AUC,) — 2r SE(AUC, )SE(AUC,), (D.1)

where var(AUC;) =Q1;+Q,—2AUC is an estimate of the variance of the AUC for test i
(i=1,2), r is the product-moment correlation coefficient and SE(AUC;) =,/var(AUC;)
(Hanley and McNeil, 1983) and use 1.96 SE(d) to construct 95% confidence limits
around d. In a paired-sample design, r is estimated as the average of the correlation
coefficients for the non-diseased and diseased subgroups. For titre results, one could
use Kendall’s tau instead of r. In a two-sample design, where the two tests have
been evaluated using different samples of animals, we set r=0. The covariance
adjustment for the paired-sample design (as assumed for ELISA A and B in our
example) is generally necessary for the comparison of diagnostic parameters based on the
same set of samples (Obuchowski, 1997). Other approaches include an adaptation of the
Dorfman—Alf maximum likelihood method (implemented in ROCKIT, Table 3) and
resampling techniques (e.g. Venkatraman and Begg, 1996, implemented in CMDT,
Table 3).

Appendix E. Sample size
For comparison of two tests with an anticipated difference d=AUC;—AUC, involving

the same number () of diseased and non-diseased animals, significance o and power f,
the required sample size is

 (2(#)/2Var(AUC,) + 2(f)/Var(AUC,) + Var(AUG,))’
_ v

(E.1)
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for a one-sided test. For 5% significance and 80% power, we insert z(«)=1.65 and
2($)=0.84, respectively. Obuchowski and McClish (1997) give further detail and describe
the case of correlated ROC curves. A comprehensive review of sample-size calculations
as well as available software is provided in Obuchowski (1998).
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